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Abstract The Sonogashira cross-couplig reaction, consist-
ing of oxidative addition, cis-trans isomerization, transme-
talation, and reductive elimination, was computationally
modeled using the DFT B3LYP/cc-pVDZ method for reac-
tion between bromobenzene and phenylacetylene. Palladi-
um diphosphane was used as a catalyst, copper(I) bromide
as a co-catalyst and trimethylamine as a base. The reaction
mechanism was studied both in the gas phase and in
dichloromethane solution using PCM method. The complete
catalytic cycle is thermodynamically strongly shifted toward
products (diphenylacetylene and regenerated palladium cat-
alyst) and is exothermic being in accordance with experi-
mental data. The rate-determining step is the oxidative
addition, since the highest point on the Gibbs energy graph
of the complete reaction is the transition state of this step.
This conclusion is also supported by recent experimental
data. The computed energy profile suggests that the trans-
metalation step is initiated by the dissociation of neutral
ligand, while the activation Gibbs energy of this step is
0.1 kcal mol-1 in the gas phase.
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Introduction

The application of transition metals, especially metals in
the subgroup of palladium, as catalysts in organic syn-
thesis has become an accepted and valued tool [1–5]
since the discovery of cross-coupling reactions in the first
half of the 1970s. Cross-coupling reactions include numer-
ous carbon-carbon bond forming reactions and are distin-
guished on the basis of the used co-catalyst or transmetalating
agent. Copper is frequently used as a co-catalyst in the case of
the Sonogashira coupling and conjugated acetylenes are
produced from aryl halides and terminal acetylenes [2].
These fragments are often present in bioactive substances
and are also important in agricultural chemistry and material
science [6].

The Sonogashira cross-coupling was described for the
first time in 1975 by three different groups [7–9]. The
reaction mechanism (Fig. 1) consists of cycles A and B [2].

The catalytic cycle A begins with the oxidative addition
of an aryl or vinyl halide or sulfonate onto a low oxidation
state palladium atom, which is followed by an isomerization
step. The subsequent attachment of the other coupling part-
ner to the complex in a transmetalation step sets the stage for
the final reductive elimination. Acetylenic derivative
RC≡CR’ is formed and the active, low oxidation state
palladium catalyst is also regenerated. The catalytic cycle
B describes the formation of the copper co-catalyst.

A large number of experimental data has been published
for the copper co-catalyzed Sonogashira reaction [2, 10–16],
but very few computational studies about the reaction mech-
anism can be found in the literature [14, 17]. Other
palladium-catalyzed cross-coupling reactions (e.g., Heck,
Stille, Suzuki reactions, etc.), which have several common
steps with the Sonogashira coupling, have also been theo-
retically investigated [18–25].
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All mentioned coupling reactions start with the oxidative
addition step, where the bond between carbon atom and
halogen atom X breaks, while new C-Pd and X-Pd bonds
are created. This is generally considered to be the rate-
determining step [18]. The catalytically active palladium
species is the low-ligated PdL2 complex (L0monodentate
phosphane ligand) or PdL2X

- anion (X0Cl, Br, I) formed by
the dissociation of stable PdL4 catalyst. The dissociation
equilibria of PdL4 and its analogue NiL4 have been investi-
gated by Amatore et al. and Tsou et al. [26, 27]. The
mechanism of oxidative addition is strongly dependent on
the reaction conditions and can change during the course of
the reaction, as the halide anion can coordinate with low-
ligated palladium species and form a new active catalyst
[28]. The anionic oxidative addition pathway, proposed by
Amatore and Jutand [29], has been computationally inves-
tigated by Goossen et al., who concluded that the breaking
of carbon-halogen bond proceeds through a pentacoordi-
nated anionic palladium complex [22].

Mechanistic studies of the oxidative addition predict the
formation of cis-PdL2RX complexes, which have rarely
been isolated [30, 31]. Therefore, the isomerization of cis-
PdL2RX to trans-PdL2RX complex is proposed. Casado and
Espinet have thoroughly investigated this step and found
four separate pathways (two of them autocatalytic and two
solvent assisted) [31]. Álvarez et al. studied these pathways
computationally and concluded that the ligand-assisted
mechanism was energetically the most favored [32].

The proposed role of copper co-catalyst in the Sonoga-
shira coupling is to activate the acetylenic derivative
through the formation of copper acetylide [2]. Such an
activation is possible only in the presence of amines as
demonstrated by Bertus et al. [33], although other bases
are also used in the case of the Sonogashira coupling [34].
Reaction mechanisms for the transmetalation step describ-
ing the role of copper acetylides have also been proposed
[35, 36], but no theoretical evidence can be found in the
literature.

The reductive elimination step is also common for many
cross-coupling reactions, similarly to the oxidative addition,
and therefore, has been widely studied both experimentally
[37] and theoretically [38–42]. Pérez-Rodríguez et al. dem-
onstrated that the reductive elimination step has a number of
possible reaction pathways, depending on the coordinating
additives present in the reaction mixture, while the energet-
ically most favored pathway proceeds through a four-
coordinated cis-PdR2L2 complex (R0Me, Ph, vinyl) [41].
The steric and electronic effects of phosphane ligands can
have large impact on the mechanism and rate of the reduc-
tive elimination as demonstrated by Ananikov et al. [42].

The aim of the current study was to model the Sonoga-
shira coupling reaction in the gas phase and in solution to
investigate the factors that influence the reaction rate, and to
study the reaction mechanism. Understanding the unique-
ness of the Sonogashira coupling might help to devise new
cascade coupling processes, where selectivity is obtained
through the inherent reactivity differences.

Theoretical model

The study of the Sonogashira cross-coupling reaction was
carried out by determining the structures of ground states
and transition states on the reaction energy hypersurface.

The Sonogashira coupling between bromobenzene, PhBr,
and phenylacetylene, PhC≡CH, was modeled, where palla-
dium diphosphane, Pd(PH3)2, was used as an active palla-
dium catalyst, copper(I) bromide, CuBr, as a co-catalyst and
trimethylamine, Me3N, as a base. Bromobenzene, phenyl-
acetylene, copper(I) bromide, and trimethylamine are
reagents used in the synthesis of disubstituted acetylenes,
while being small enough for computational study. Palladium
diphosphane was chosen to represent bis(triphenylphosphane)
palladium. The phosphane might be too simple a model for
experimentally used bulkier triphenylphosphane and not re-
flect all the interactions, but we have used it to minimize
computational time.

All calculations were performed using Gaussian 03 pro-
gram package [43]. All geometry optimizations and vibra-
tional analyses were done using the density functional
theory (DFT) with hybrid B3LYP functional [44–47] and

Fig. 1 Mechanism of the Sonogashira cross-coupling reaction, where
I: oxidative addition; II: cis-trans isomerization; III: transmetalation;
IV: reductive elimination

3026 J Mol Model (2012) 18:3025–3033



the cc-pVDZ basis set [48]. In the case of copper and
palladium, Stuttgart-Dresden effective core potentials with
accompanying basis sets were used [49]. The gradient-
corrected hybrid three-parameter B3LYP functional has
been used throughout the study because previous theoretical
calculations have shown that B3LYP in combination with
double zeta quality basis sets and quasirelativistic energy
consistent pseudopotentials of the Stuttgart-Dresden group
is a cost-effective and reliable method for studying Pd- and
Pt-containing systems [50, 51]. Only the lowest spin states
of all species were studied. Harmonic frequency analysis
was used to confirm that the found structures correspond
either to minima (number of imaginary frequencies equals
zero) or transition states (number of imaginary frequencies
equals one). Unscaled frequencies from vibrational analysis
were also used to get Gibbs energies at 1 atm and 298.15 K.
Intrinsic reaction coordinate (IRC) analysis was used to
verify that the obtained transition state connects reactants
and products [52, 53]. Solvation Gibbs energies were cal-
culated using polarizable continuum model (PCM) [54] by
performing single point calculations for all minima and
transition states (using scfvac and Radii0UFF keywords).
Dichloromethane was chosen as a solvent, as it is widely
used both in mechanistic studies (NMR) and synthetic pro-
cedures. Geometries and energies for all discussed structures
are deposited as Supplementary material.

Results and discussion

Oxidative addition

The process starts with the addition of bromobenzene to
the active catalyst Pd(PH3)2 (see Fig. 2, SC) and the
subsequent formation of van der Waals adduct 1 (Fig. 2).
The formation of adduct 1 results in a positive Gibbs energy
change (ΔGGP05.9 kcal mol-1, ΔGDCM09.2 kcal mol-1),
which can be attributed to the loss of entropy, as the
ΔHGP0−0.1 kcal mol-1. Structure 2 (see Fig. 2 and 3)
corresponds to the transition state of oxidative addition, in
which the P-Pd-P angle is 113°, the Pd-Br and Pd-C dis-
tances are 2.634 Å and 2.154 Å, respectively. The Br-C
bond of bromobenzene is not coplanar with the P-Pd-P
plane, probably due to the steric interaction between the
phenyl group and phosphane ligands. The gas-phase Gibbs
energy of transition state is 25.7 kcal mol-1 higher than the
starting compounds and solvent effects increase it to
27.9 kcal mol-1. Oxidative addition results in the formation
of planar cis-Pd(PH3)2BrPh complex (3 in Fig. 2), where the
P-Pd-P angle is 103° and the Br-Pd-C angle is 89°. The Pd-P
bond lengths in this complex are not equal due to the larger
trans-effect of the phenyl group. The Pd-P bond lengths are
2.431 Å and 2.293 Å, where the longer bond corresponds to

the phosphane ligand in trans-position relative to the phenyl
group. The formation of 3 leads to a large decrease in Gibbs
energy (ΔGGP0-1.3 kcal mol-1, ΔGDCM0-6.3 kcal mol-1,
relative to starting compounds).

The anionic oxidative addition reaction mechanism, pro-
posed by Kozuch et al. [19], was investigated by coordinat-
ing bromide anion to palladium catalyst. Bromide anions,
present in the reaction mixture, can interact with Pd(PH3)2,
which results in the formation of complex 4 (Fig. 4). Gibbs
energy of this reaction is -14.4 kcal mol-1 in the gas phase
and 4.9 kcal mol-1 in dichloromethane. In the subsequent
formation of π-complex with bromobenzene (5), the bro-
mide anion, previously coordinated to palladium, moves
toward the ligands and binds to one of the hydrogen atoms
of each ligand. The formation of complex 5 is highly end-
ergonic (16.7 kcal mol-1 in the gas phase and 23.3 kcal mol-1

in dichloromethane, relative to infinitely separated bromo-
benzene and 4) and is accompanied by the elongation of C-
Br bond in bromobenzene from 1.917 Å to 2.002 Å. Com-
plex 6 (see Fig. 3) is the transition state of anionic oxidative
addition, where the P-Pd-P angle is 99.3°. This is somewhat
smaller than in the case of the neutral oxidative addition
pathway (P-Pd-P 113°), which is due to the interaction of
the bromide anion with the phosphane ligands. The imagi-
nary frequency of this transition state corresponds to the C-
Br bond lengthening. The gas-phase Gibbs energy of 6
relative to reactants is 10.2 kcal mol-1, while in dichloro-
methane it is considerably larger (35.7 kcal mol-1). Complex
6 is followed by structure 7, which after the dissociation of
bromide anion, leads to cis-Pd(PH3)2BrPh (3). The bromide

Fig. 2 Gibbs energies of the intermediate states during oxidative
addition, relative to widely separated starting compounds (SC). Solid
line: the gas phase; dashed line: dichloromethane (PCM); L0PH3
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anion in 7 is bound to both ligands, causing the decrease of
the P-Pd-P angle relative to complex 3 (94.7° and 103°,
respectively). Therefore, the halide anion affects the oxida-
tive addition step by interacting with the phosphane ligands
and reducing the P-Pd-P angle compared to the neutral
complexes. This reduced steric interaction between the
ligands and bromobenzene, in turn, results in the lowering
of the energy of the transition state in the gas phase (from
25.7 kcal mol-1 to 10.2 kcal mol-1). The situation seems to
be reversed in DCM, as the transition state of anionic
pathway is by 6.8 kcal mol-1 higer, however, the used
solvation model can overestimate the solvation Gibbs energy
of Br- as described by Senn et al. [55] and, severely distort
the PES.

Cis-trans isomerization

Different authors have proposed numerous cis-trans isom-
erization mechanisms for coplanar Pd compounds, includ-
ing isomerization through a trigonal bipyramidal transition
state as a result of addition of a ligand, base or solvent
molecule, as well as isomerization through a ligand dissoci-
ation [22, 31, 32]. In the present work we were unable to
locate the trigonal bipyramidal transition state, so only
isomerization through a dissociation of a phosphane ligand
is considered.

Isomerization starts with the dissociation of one phos-
phane ligand. There are two ligands in the complex, thus,
two reaction pathways are possible. Due to the larger trans-
effect of the phenyl group, the phosphane ligand in trans-
position relative to the phenyl group has weaker bonding
with the Pd atom and the dissociation results in planar cis-Pd
(PH3)BrPh complex 8 (Fig. 5).

The formation of complex 8 causes the rise in the gas-
phase Gibbs energy (4.0 kcal mol-1), while in dichlorome-
thane Gibbs energy of this reaction is -1.3 kcal mol-1.
This can be attributed to solvation Gibbs energy of
8 (ΔGsolv0-6.6 kcal mol-1), which is much larger than in
the case of cis-Pd(PH3)2BrPh (ΔGsolv0-1.3 kcal mol-1). The
dissociation of phosphane ligand increases the Br-Pd-C
angle (from 89° to 98°), which is due to the loss of steric
interaction between the phosphane ligands. Structure 10 (see
Fig. 3 and 5) is the transition state of cis-trans isomerization
proceeding through 8, where the Br-Pd-C angle is 145° and
the Pd-Br bond length has somewhat increased (from
2.416 Å in complex 8 to 2.447 Å in complex 10). The
relative Gibbs energy of this transition state is 8.8 kcal mol-1

in the gas phase and 7.7 kcal mol-1 in dichloromethane and
the imaginary frequency of saddle point corresponds to the
increase of Br-Pd-C angle. This transition state is followed
by trans-Pd(PH3)BrPh complex (12 in Fig. 5), where the Br-
Pd-C angle is 162°. The end product of isomerization, trans-

Fig. 3 Optimized structures of the transition states of the Sonogashira cross-coupling reaction
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Pd(PH3)2BrPh, (13 in Fig. 5) is formed by the addition of
phosphane ligand to the complex 12. The overall Gibbs
energy change of cis-trans isomerization is -6.2 kcal mol-1

in the gas phase and -4.6 kcal mol-1 in dichloromethane.
An alternative isomerization mechanism might also be

envisaged, where the phosphane ligand of Pd(PH3)2BrPh in
trans-position of the bromine atom dissociates and results in
the formation of complex 9 (see Fig. 5). As the bromine
atom has a weaker trans-effect than the phenyl group, the
Gibbs energy of ligand dissociation is higher (ΔGGP0

13.2 kcal mol-1, ΔGDCM011.3 kcal mol-1) than in the case
of complex 8. The imaginary frequency of the transition
state (11 in Fig. 3 and 5) of this alternative isomerization
corresponds to the movement of phenyl group, while the
Gibbs energy is much higher than the transition state of 10
(ΔGGP044.5 kcal mol-1, ΔGDCM046.2 kcal mol-1, relative
to 3, see Fig. 5).

The above described isomerization mechanisms both
involve a ligand dissociation, suggesting that their rate
is dependent on the concentration of free ligand (Lewis
base in general). In the case of excess phosphane, the
dissociation equilibrium should shift toward complex 3,
slowing down the isomerization. Urata et al. demonstrated
this by using the free phosphane ligand to stop isomerization
process [30].

Transmetalation and the role of copper

The proposed role of CuBr is to activate the terminal acet-
ylenic derivative to form copper acetylide (Eq. 1). As a
deprotonation process also appears, it is necessary to take
into account a base (e.g., trimethylamine, Me3N):

Ph� C � C� Hþ CuBr þMe3N !
Ph� C � C� CuþMe3N � HBr:

ð1Þ

Gibbs energy of this reaction in the gas phase is
19.8 kcal mol-1 and 8.4 kcal mol-1 in dichloromethane.
Phenylacetylide group is transferred from the copper atom
to the Pd-complex and similarly to cis-trans isomerization the
transmetalation step begins with the dissociation of one
phosphane ligand. A possible mechanism without ligand
dissociation was also investigated, but no corresponding tran-
sition state and minimum were found. The dissociation of
ligand results in trans-Pd(PH3)BrPh complex (12) and free
phosphane ligand. While complex 12 is the product of cis-
trans isomerization step, direct transmetalation reaction
after isomerization is possible. On the other hand, the
addition of neutral ligand (PH3) to complex 12 results in
quite large Gibbs energy drop (−13.5 kcal mol-1 in the gas
phase, -9.8 kcal mol-1 in dichloromethane) and tetracoordi-
nated complex 13. Therefore, we propose that complex 13 is

Fig. 5 Gibbs energies of cis-trans isomerization, relative to cis-Pd
(PH3)2BrPh complex 3. Solid line: the gas phase; dashed line:
dichloromethane (PCM); L0PH3

Fig. 4 Gibbs energies along the anionic oxidative addition pathway,
relative to widely separated starting compounds (SC). Solid line: the
gas phase; dashed line: dichloromethane (PCM); L0PH3
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present in the reaction mixture as reaction intermediate. The
addition of the trans-complex to copper(I) phenylacetylide
results in complex 14 (Fig. 6) and is accompanied by a large
decrease in Gibbs energy (-35.0 kcal mol-1 in the gas phase
and -19.0 kcal mol-1 in dichloromethane, relative to infinitely
separated ligand, copper phenylacetylide and 12). The Pd-
Cu distance in this complex is only 2.65 Å. Structure 15
(Fig. 3) is the transition state between complexes 14 and 16
corresponding to the decrease of C-Pd-C angle. The activa-
tion energy from complex 14 to complex 15 is very small in
the gas phase (ΔGact00.1 kcal/) and is negative in dichloro-
methane (ΔGact0-0.7 kcal mol-1), which can be attributed to
the problems of the solvent model used. The corresponding
activation electronic energies are 1.8 kcal mol-1

and 1.2 kcal mol-1, respectively. Structure 16 can be
described as a complex between copper(I) bromide and
cis-Pd(PH3)(Ph)C≡CPh, as the Cu-Br bond length in 16 is
close to that of free CuBr molecule (2.308 Å and 2.210 Å,
respectively). The subsequent dissociation of copper(I) bro-
mide and formation of complex 17 significantly increases the
Gibbs energy (37.3 kcal mol-1 in the gas phase and
19.0 kcal mol-1 in dichloromethane, relative to infinitely
separated ligand and 16), which can be due to the high
interaction energy between the triple bond and copper atom.
The addition of ligand PH3 to complex 17 results in the
product of transmetalation step (18 in Fig. 6) with the total
Gibbs energy change 4.3 kcal mol-1 in the gas phase and
6.3 kcal mol-1 in dichloromethane. There have recently been
suggestions that amines, which are usually considered only
as deprotonating agents, can also particpate in oxidative addi-
tion and transmetalation steps [56]. However, the study of
those mechanisms is outside the scope of the current paper.

Reductive elimination

The product of the transmetalation step, cis-Pd(PH3)2(Ph)C≡CPh
(18), decomposes into palladium diphosphane, Pd(PH3)2,
and diphenylacetylene (tolane), Ph-C≡C-Ph, during

Fig. 6 Gibbs energies of trans-
metalation step, relative to trans-
Pd(PH3)2BrPh complex (13).
Solid line: the gas phase; dashed
line: dichloromethane (PCM);
L0PH3

Fig. 7 Gibbs energies of reductive elimination step, relative to cis-Pd
(PH3)2(Ph)C≡CPh complex (18). Solid line: the gas phase; dashed
line: dichloromethane (PCM); L0PH3
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reductive elimination. In the transition state of the process
(19, see Fig. 3 and 7), the C-Pd-C angle is reduced by 30°
(87° → 57°) compared to the structure 18 and the distance
between carbon atoms, which are bound to Pd atom, is
1.95 Å. The imaginary frequency of this transition state
corresponds to the decrease of C-Pd-C angle. The activation
Gibbs energy is 8.5 kcal mol-1 in the gas phase and
11.9 kcal mol-1 in dichloromethane.

IRC calculations for the transition state confirmed that
the product of reductive elimination is complex 20,
which can be described as a complex between active
catalytic species and diphenylacetylene. The subsequent
dissociation of complex 20 to Pd(PH3)2 (SC) and diphe-
nylacetylene is accompanied by further decrease in Gibbs
energy (-6.4 kcal mol-1 in the gas phase, -10.7 kcal mol-1 in
dichloromethane). This drop in Gibbs energy can be attrib-
uted to entropy, as corresponding dissociation energies are
close to zero (electronic energy is 0.1 kcal mol-1 in the gas
phase and 0.0 kcal mol-1 in dichloromethane). The overall
Gibbs energy change of reductive elimination is -34.9 kcal mol-
1 in the gas phase and -33.3 kcal mol-1 in dichloromethane.

Conclusions

Sonogashira cross-coupling is a multistep process, consist-
ing of oxidative addition, cis-trans isomerization, transme-
talation, and reductive elimination. The reaction mechanism
was computationally studied in the presence of copper co-
catalyst in the gas phase and in dichloromethane solution.
The complete catalytic cycle is thermodynamically strongly
shifted toward the products (see Eq. 2).

PhBr þ PhC � CHþMe3 !
PhC � CPhþMe3N � HBr

ð2Þ

ΔGGP ¼ �18:3 kcalmol�1;ΔGDCM ¼ � 28:0 kcalmol�1

The conclusion of our modeling is that the rate-limiting
step of the process is the oxidative addition, since the high-
est point on the Gibbs energy graph of the complete reaction
is the transition state of this addition. This prediction corre-
lates well with recent experimental data, as the activation
enthalpy of the Sonogashira cross-coupling reaction (bro-
mobenzene and phenylacetylene in the presence of tert-
Bu3P-derived catalyst) [57] is comparable with our calcu-
lated (electronic) activation energy of the oxidative addition
in the gas phase (17.7 kcal mol-1 and 15.6 kcal mol-1,
respectively). The finding that the anionic oxidative addition
is energetically favored is also in agreement with earlier
experimental [58] and computational [22] results. The cis-
geometry of the primary product of the oxidative addition,

similar to the acetate analog in [22], might rearrange to the
thermodynamically more favored trans-complex.

The second crucial step of the catalytic cycle is the
transmetalation step. Our conclusion, involving copper
bromide as a co-catalyst in our model, is that, this step
might be initiated by dissociation of the neutral ligand,
contrary to a recent report in the literature [17]. It is
important to note that the experimentally observed inhibit-
ing effect of excess ligand on the reaction rate can be
attributed to the unfavorable shift of the equilibrium in
several steps, since according to our results both the cis-trans
isomerization and the transmetalation commence by the
dissociation of a ligand molecule.

Finally, we should point out the fact that copper (and
palladium) might form other complexes with a number of
Lewis basic entities present in the system (solvent, base,
ligand, reactant, product). This suggests that computational
results have to be interpreted with caution, since the specific
effect of additives on the reaction path can be very strong
and that fuller understanding of this fascinating and synthet-
ically useful transformation requires the continuation of its
systematic study currently ongoing in several laboratories.
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